ENERGY CONSUMPTION PREDICTION USING LINEAR REGRESSION AND MULTILAYER PERCEPTRON (MLP) IN THE PROOF OF WORK (POW) CONSENSUS ALGORITHM
DOI:
https://doi.org/10.70248/jrsit.v3i1.3000Keywords:
Proof of Work, Bitcoin, Energy Consumption Prediction, Prophet, Multi-Layer PerceptronAbstract
This study discusses energy consumption prediction in blockchain networks based on the Proof of Work (PoW) consensus algorithm, using a Bitcoin case study. The main issue raised is the high energy consumption in the PoW mechanism, which is dynamic and non-linear, making it difficult to accurately predict using simple linear methods. This study proposes a combined approach between the Prophet model to predict energy consumption trends and the Multi-Layer Perceptron (MLP) model to estimate the energy consumption gap (gap_twh) between the estimated and minimum values. The data used comes from Digiconomist, covering the period 2017–2025, with research stages including data cleaning, feature engineering, normalization, modeling, and evaluation using MAE, MSE, and R² metrics. The results show that the combination of Prophet and MLP is able to provide more precise predictions than the linear regression model as a baseline, with interactive visualization through a Streamlit-based dashboard that facilitates interpretation of trends and uncertainty ranges. These findings are expected to serve as a reference for researchers, industry players, and policymakers in monitoring and optimizing energy consumption in crypto mining activities.
References
Afrian, F., Akbar, N. I., Khalifatun, S., Latifah, N., Mutiara, D., Informatika, J., Teknik, F., Semarang, U. P., Lantai, G. B., Jl, K., & Timur, S. (2024). ANALISIS SISTEMATIK ALGORITMA KONSENSUS PADA BLOCKCHAIN pendekatan yang merujuk pada metodologi riset yang dirancang untuk mengidentifikasi ,. 9(Sens 9), 519–527.
Arfa, M. F., AlFathan, M. R., Lumbantobing, H. B., & Rahmadenni, R. (2023). Prediksi Harga Cryptocurrency Dengan Metode Linier Regresi. SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, 1(1), 8–15. https://journal.irpi.or.id/index.php/sentimas/article/view/609%0Ahttps://journal.irpi.or.id/index.php/sentimas/article/download/609/332
de Vries, A. (2018). Bitcoin’s Growing Energy Problem. Joule, 2(5), 801–805. https://doi.org/10.1016/j.joule.2018.04.016
Eligüzel, N., & Aydoğan, S. (2025). Predicting Bitcoin Mining Energy Consumption Using Machine Learning: A Case for k-Nearest Neighbors Regression. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 14(1), 561–582. https://doi.org/10.17798/bitlisfen.1610560
Fadel Pradika Rodney, M., Rizal Sultan, A., & Usman. (2022). Peramalan Beban Listrik Menggunakan Kombinasi Metode Jaringan Saraf Tiruan Dan Regresi Linier Di ULP Sungguminasa. Sntei, 2, 441–445.
Gulo, S. H., & Lubis, A. H. (2024). Penerapan Multi-Layer Perceptron untuk Mengklasifikasi Penduduk Kurang Mampu. Explorer, 4(2), 51–59.
Kaur, H., Rani, V., Kumar, M., Sachdeva, M., Mittal, A., & Kumar, K. (2024). Federated learning: a comprehensive review of recent advances and applications. Multimedia Tools and Applications, 83(18), 54165–54188. https://doi.org/10.1007/s11042-023-17737-0
Laimon, M., Almadadha, R., & Goh, S. (2025). Energy Consumption of Crypto Mining: Consequences and Sustainable Solutions Using Systems Thinking and System Dynamics Analysis. Sustainability (Switzerland), 17(8). https://doi.org/10.3390/su17083522
Lee, S., & Kim, S. (2020). Proof-of-stake at stake: Predatory, destructive attack on PoS cryptocurrencies. CRYBLOCK 2020 - Proceedings of the 3rd Workshop on Cryptocurrencies and Blockchains for Distributed Systems, Part of MobiCom 2020, 7–11. https://doi.org/10.1145/3410699.3413791
Maarif, M. R., Saleh, A. R., Habibi, M., Fitriyani, N. L., & Syafrudin, M. (2023). Energy Usage Forecasting Model Based on Long Short-Term Memory (LSTM) and eXplainable Artificial Intelligence (XAI). Information (Switzerland), 14(5). https://doi.org/10.3390/info14050265
Nainwal, R., & Sharma, A. (2023). Development of an energy prediction model for residential buildings using Artificial Neural Network. IOP Conference Series: Earth and Environmental Science, 1279(1). https://doi.org/10.1088/1755-1315/1279/1/012006
Pawar, M. K., Patil, P., Narayan, D. G., Pandey, V., Jain, S., & Kumar, P. (2025). Efficient Miner Selection in Blockchain Based on Predicted Transaction Time. Procedia Computer Science, 252, 202–211. https://doi.org/10.1016/j.procs.2024.12.022
Poongodi, M., Sharma, A., Vijayakumar, V., Bhardwaj, V., Sharma, A. P., Iqbal, R., & Kumar, R. (2020). Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Computers and Electrical Engineering, 81, 106527. https://doi.org/10.1016/j.compeleceng.2019.106527
Reyad, M., Sarhan, A. M., & Arafa, M. (2023). A modified Adam algorithm for deep neural network optimization. Neural Computing and Applications, 35(23), 17095–17112. https://doi.org/10.1007/s00521-023-08568-z
Rukhiran, M., Boonsong, S., & Netinant, P. (2024). Sustainable Optimizing Performance and Energy Efficiency in Proof of Work Blockchain : A Multilinear Regression Approach.
Sapra, N., & Shaikh, I. (2023). Impact of Bitcoin mining and crypto market determinants on Bitcoin-based energy consumption. Managerial Finance, 49(11), 1828–1846. https://doi.org/10.1108/MF-03-2023-0179
Sapra, N., Shaikh, I., & Dash, A. (2023). Impact of Proof of Work (PoW)-Based Blockchain Applications on the Environment: A Systematic Review and Research Agenda. Journal of Risk and Financial Management, 16(4). https://doi.org/10.3390/jrfm16040218
Truby, J., Brown, R. D., Dahdal, A., & Ibrahim, I. (2022). Blockchain, climate damage, and death: Policy interventions to reduce the carbon emissions, mortality, and net-zero implications of non-fungible tokens and Bitcoin. Energy Research and Social Science, 88(August 2021), 102499. https://doi.org/10.1016/j.erss.2022.102499
Tsuyuguchi, T., & Wang, H. (2024). Quasi-experimental research and spillover effects on Ethereum Merge. Applied Economics Letters, DiD. https://doi.org/10.1080/13504851.2024.2308587
Xiong, H., Chen, M., Wu, C., Zhao, Y., & Yi, W. (2022). Research on Progress of Blockchain Consensus Algorithm: A Review on Recent Progress of Blockchain Consensus Algorithms. Future Internet, 14(2). https://doi.org/10.3390/fi14020047