IMPLEMENTATION OF FASTER R-CNN ALGORITHM IN SMOKING ACTIVITY DETECTION IN CAMPUS ENVIRONMENT
DOI:
https://doi.org/10.70248/jrsit.v3i1.2647Keywords:
Detection, Faster R-CNN, Computer Vision, Deep Learning, Smoke-Free CampusAbstract
The implementation of smoke-free area regulation in campus environment faces challenges in terms of supervision and enforcement. This study aims to determine the performance of deep learning-based object detection algorithm, namely Faster R-CNN, in detecting smoking activity in the campus area of Universitas Islam Sultan Agung (UNISSULA). The dataset used consists of 1935 annotated images of smoking activity obtained from Roboflow, with data division of 85% training and 15% validation. The model was trained using Google Colab and tested based on evaluation metrics such as accuracy, precision, recall, and f1-score. The results show that Faster R-CNN has superior performance with the best evaluation value reaching 100% at a threshold of 0.5. These findings conclude that Faster R-CNN is suitable for use in a smoking activity detection system in a campus environment, especially in the context of detection accuracy and consistency.
References
Alamsyah, D., & Pratama, D. (2019). Deteksi Ujung Jari menggunakan Faster-RCNN dengan Arsitektur Inception v2 pada Citra Derau. JuSiTik : Jurnal Sistem Dan Teknologi Informasi Komunikasi, 2(1), 1. https://doi.org/10.32524/jusitik.v2i1.435
Audina, M. T., Utaminingrum, F., & Syauqi, D. (2021). Sistem Deteksi dan Klasifikasi Jenis Kendaraan berbasis Citra dengan menggunakan Metode Faster-RCNN pada Raspberry Pi 4B. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(2), 814–819. http://j-ptiik.ub.ac.id
Pardede, J., & Hardiansah, H. (2022). Deteksi Objek Kereta Api menggunakan Metode Faster R-CNN dengan Arsitektur VGG 16. MIND Journal, 7(1), 21–36. https://doi.org/10.26760/mindjournal.v7i1.21-36
Poetro, B. S. W., Mulyono, S., & Pramesti, V. A. (2024). Prediksi Penyakit Batu Ginjal dengan Menerapkan Convolutional Neural Network. 153–162.
Pradana, I. C., Mulyanto, E., & Rachmadi, R. F. (2022). Deteksi Senjata Genggam Menggunakan Faster R-CNN Inception V2. Jurnal Teknik ITS, 11(2). https://doi.org/10.12962/j23373539.v11i2.86587
Putri, S. T. E., & Fahrurozi, A. (2022). Pendeteksian Objek Pada Citra Hewan Karnivora Dan Herbivora Menggunakan Faster R-Cnn. Jurnal Ilmiah Informatika Komputer, 27(1), 32–42. https://doi.org/10.35760/ik.2022.v27i1.5858
Ramadhanu, A., Ayu Mahessya, R., Raihan Zaky, M., Isra, M., Informasi, S., & Putra Indonesia YPTK Padang, U. (2023). Penerapan Teknologi Machine Learning Dengan Metode Vader Pada Aplikasi Sentimen Tamu Di Hotel Dymens. JOISIE Journal Of Information System And Informatics Engineering, 7(1), 165–173.
Sudarto, S. (2020). Budaya Akademik Islami di Universitas Islam Sultan Agung Semarang dalam perspektif islamisasi ilmu. Ta’dibuna: Jurnal Pendidikan Islam, 9(2), 267. https://doi.org/10.32832/tadibuna.v9i2.3526
Tivany Ramadhani, Usna Aulia, & Winda Amelia Putri. (2023). Bahaya Merokok Pada Remaja. Jurnal Ilmiah Kedokteran Dan Kesehatan, 3(1), 185–195. https://doi.org/10.55606/klinik.v3i1.2285