ANALISIS SENTIMEN PENGGUNA E-COMMERCE DAN MARKETPLACE MENGGUNAKAN SUPPORT VECTOR MACHINE
DOI:
https://doi.org/10.59407/jrsit.v1i4.555Abstract
Peningkatan penggunaan e-commerce dan aplikasi marketplace dipengaruhi oleh kenaikan jumlah pengguna internet. Hal tersebut berdampak pada pertumbuhan jumlah ulasan atau opini terkait pemanfaatan e-commerce dan aplikasi marketplace, khususnya di media sosial. Merujuk pada keterbatasan e-commerce, maka opini terkait e-commerce dan aplikasi marketplace perlu dianalisis untuk mengetahui mayoritas masyarakat dalam menyikapi trend penggunaan e-commerce. Studi ini bertujuan membahas analisis opini melalui klasifikasi sentimen analisis terkait penerimaan e-commerce dan aplikasi marketplace. Data yang digunakan bersumber dari opini media sosial Twitter. Sedangkan model klasifikasi menggunakan support vector machine. Berdasarkan hasil pengujian, predikasi klasifikasi sentimen tertinggi diperoleh ketika menggunakan kernel linier dengan nilai akurasi 94%, diikuti oleh RBF dengan akurasi 87% dan kernel polynomial dengan akurasi 89%. Sementara dari aspek klasifikasi sentimen negatif tertinggi didapatkan ketika mengimplementasikan kernel RBF dan polynomial.
References
N. Chen, “E-Commerce Brand Ranking Algorithm Based on User Evaluation and Sentiment Analysis,” Front. Psychol., vol. 13, no. June, pp. 1–11, 2022, doi: 10.3389/fpsyg.2022.907818.
We Are Social, “Digital 2022 Indonesia, February 2022,” New York, 2022. [Online]. Available: https://datareportal.com/reports/digital-2022-indonesia?msclkid=54849450ac3011eca46cf06ec644a888
K. Ariansyah, E. R. E. Sirait, B. A. Nugroho, and M. Suryanegara, “Drivers of and barriers to e-commerce adoption in Indonesia: Individuals’ perspectives and the implications,” Telecomm. Policy, vol. 45, no. 8, p. 102219, 2021, doi: 10.1016/j.telpol.2021.102219.
Badan Pusat Statistik, “Analisis Hasil Survei Dampak COVID-19 terhadap Pelaku usaha,” 2020.
J. Mou and M. Benyoucef, “Consumer behavior in social commerce: Results from a meta-analysis,” Technol. Forecast. Soc. Change, vol. 167, no. January, p. 120734, 2021, doi: 10.1016/j.techfore.2021.120734.
R. Y. Kim, “Using Online Reviews for Customer Sentiment Analysis,” IEEE Eng. Manag. Rev., vol. 49, no. 4, pp. 162–168, 2021, doi: 10.1109/EMR.2021.3103835.
D. L. Rianti, Y. Umaidah, and A. Voutama, “Tren Marketplace Berdasarkan Klasifikasi Ulasan Pelanggan Menggunakan Perbandingan Kernel Support Vector Machine,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 6, no. 1, p. 98, 2021, doi: 10.30998/string.v6i1.9993.
L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning,” IEEE Access, vol. 8, pp. 23522–23530, 2020, doi: 10.1109/ACCESS.2020.2969854.
G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, “Sentiment analysis of comment texts based on BiLSTM,” IEEE Access, vol. 7, pp. 51522–51532, 2019, doi: 10.1109/ACCESS.2019.2909919.
G. G. Jayasurya, S. Kumar, B. K. Singh, and V. Kumar, “Analysis of Public Sentiment on COVID-19 Vaccination Using Twitter,” IEEE Trans. Comput. Soc. Syst., vol. 9, no. 4, pp. 1101–1111, 2022, doi: 10.1109/TCSS.2021.3122439.
M. Hamka, N. Alfatari, and D. Ratna Sari, “Analisis Sentimen Produk Kecantikan Jenis Serum Menggunakan Algoritma Naïve Bayes Classifier,” J. Sist. Komput. dan Inform., vol. 4, no. 1, p. 64, 2022, doi: 10.30865/json.v4i1.4740.
Y. Fauziah, B. Yuwono, and A. S. Aribowo, “Lexicon Based Sentiment Analysis in Indonesia Languages : A Systematic Literature Review,” vol. 1, no. 1, pp. 364–367, 2021, doi: 10.31098/cset.v1i1.397.
R. Catelli, S. Pelosi, and M. Esposito, “Lexicon-Based vs . Bert-Based Sentiment Analysis : A Comparative Study in Italian,” 2022.
M. H. Setiawan, I. G. A. Gunadi, and G. Indrawan, “Klasifikasi Pelayanan Kesehatan Berdasarkan Data Sentimen Pelayanan Kesehatan menggunakan Multiclass Support Vector Machine,” J. Sist. dan Inform., vol. 17, no. 1, pp. 47–54, 2022, [Online]. Available: https://www.jsi.stikom-bali.ac.id/index.php/jsi/article/view/512
R. H. Muhammadi, T. G. Laksana, and A. B. Arifa, “Combination of Support Vector Machine and Lexicon-Based Algorithm in Twitter Sentiment Analysis,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 8, no. 1, pp. 59–71, 2022, doi: 10.23917/khif.v8i1.15213.
A. Shafira, “Hoax COVID-19 News Detection Based on Sentiment Analysis in Indonesian using Support Vector Machine (SVM) Method,” Int. J. Inf. Commun. Technol., vol. 8, no. 2, pp. 66–77, 2023, doi: 10.21108/ijoict.v8i2.682.
M. K. Tamami and I. Kharisudin, “Komparasi Metode Support Vector Machine dan Naive Bayes Classifier untuk Pemodelan Kualitas Pengajuan Kredit,” Indones. J. Math. Nat. Sci., vol. 46, no. 1, pp. 38–44, 2023, doi: 10.15294/ijmns.v46i1.46174.
R. Ramlan, N. Satyahadewi, and W. Andani, “Analisis Sentimen Pengguna Twitter Menggunakan Support Vector Machine Pada Kasus Kenaikan Harga BBM,” Jambura J. Math., vol. 5, no. 2, pp. 431–445, 2023, doi: 10.34312/jjom.v5i2.20860.
C. Sammut and G. I. Webb, Encyclopedia of Machine Learning. New York: Springer US, 2010. doi: 10.1007/978-0-387-30164-8.
S. Raschka, C. F. J. E. S. O. Verdier, J. Hearty, J. Huffman, and A. Pajankar, Python Machine Learning, vol. 216. 2000.
M. Abduh, M. Hamka, T. Taniredja, A. Zainuddin, and W. N. Habiby, “Indonesian perceptions on online learning amidst COVID-19 : a Twitter sentiment analysis,” Indones. J. Electr. Eng. Comput. Sci., vol. 30, no. 1, pp. 567–576, 2023, doi: 10.11591/ijeecs.v30.i1.pp567-576.
R. Cahyadi et al., “Recurrent Neural Network (Rnn) Dengan Long Short Term Memory (Lstm) Untuk Analisis Sentimen Data Instagram,” J. Inform. dan Komput., vol. 5, no. 1, pp. 1–9, 2020, doi: h10.26798/jiko.v5i1.407.
E. Cambria, Q. Liu, S. Decherchi, F. Xing, and K. Kwok, “SenticNet 7: A Commonsense-based Neurosymbolic AI Framework for Explainable Sentiment Analysis,” in 2022 Language Resources and Evaluation Conference, LREC 2022, Marseille: European Language Resources Association, 2022, pp. 3829–3839.
L. Vu, “A lexicon-based method for Sentiment Analysis using social network data,” in Int’l Conf. Information and Knowledge Engineering, CSREA Press, 2017.
M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021.


















