PENDEKATAN IN SILICO MELALUI QSAR DAN MOLECULAR DYNAMICS: TINJAUAN SISTEMATIS KANDIDAT OBAT ANTIBAKTERI RESISTEN
DOI:
https://doi.org/10.70248/jophs.v2i3.3134Abstract
Resistensi antibakteri merupakan ancaman serius bagi kesehatan global yang menuntut penemuan kandidat obat baru melalui pendekatan inovatif. Penelitian ini bertujuan untuk meninjau secara sistematis penerapan metode komputasi Quantitative Structure–Activity Relationship (QSAR) dan Molecular Dynamics (MD) dalam pengembangan obat antibakteri terhadap bakteri resisten. Kajian dilakukan menggunakan metode Systematic Literature Review (SLR) berdasarkan pedoman PRISMA dengan menelusuri publikasi ilmiah periode 2015–2025 yang relevan. Proses seleksi dan analisis literatur dilakukan untuk mengidentifikasi peran QSAR dan MD dalam prediksi, validasi, serta optimasi senyawa antibakteri potensial. Hasil kajian menunjukkan bahwa QSAR mampu memprediksi potensi aktivitas antibakteri berdasarkan hubungan kuantitatif antara struktur kimia dan aktivitas biologis, sedangkan MD berperan dalam mengevaluasi kestabilan kompleks ligan–protein serta mekanisme interaksi molekuler pada kondisi biologis simulatif. Target protein yang sering dikaji meliputi InhA, DNA gyrase, topoisomerase IV, IKK-β, sigmacidins, dan penicillin-binding protein (PBP), dengan fokus pada patogen prioritas seperti Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, dan Streptococcus spp. Temuan ini menegaskan bahwa integrasi QSAR dan MD menghasilkan pendekatan komplementer yang efektif dalam mengidentifikasi serta memvalidasi kandidat molekul dengan aktivitas antibakteri tinggi, sehingga pendekatan in silico berbasis QSAR dan MD berpotensi menjadi strategi penting dalam percepatan penemuan obat untuk menghadapi krisis resistensi antibiotik di masa mendatang.
References
Ali, A., Ali, A., Abida, A., Zaidi, S. H. H., Alsalman, A. J., Al Hawaj, M. A., Singla, N., & Imran, M. (2024). Exploring Phytochemical Compounds Against Pseudomonas Aeruginosa Using QSAR, Molecular Dynamics, and Free Energy Landscape. Chemistryselect, 9(37). https://doi.org/10.1002/slct.202401865
Allam, A. A., Rudayni, H. A., Ahmed, N. A., & Alkhayl, F. F. A. (2025). Comprehensive insights into carbonic anhydrase inhibition: A triad of in vitro, in silico, and in vivo perspectives. Enzyme and Microbial Technology, 189(1), 110–309. https://doi.org/https://doi.org/10.1016/j.enzmictec.2025.110657
Amin, S., & Nabila, L. S. (2025). Review Artikel: Peran Pendekatan In Silico dalam Kimia Medisinal untuk Perancangan Senyawa Antibiotik Baru. Indonesian Journal of Science, 1(6), 101–112. https://doi.org/https://doi.org/10.31004/science.v1i6.252
Amin, S., Nisa, F. K., Setiawati, Y., & Fauzan, M. A. A. (2025). Kajian Kimia Medisinal Ciprofloxacin: Mekanisme Kerja, Antibakteri, dan Pola Resistensi Bakteri. Jurnal Ilmiah Kedokteran Dan Kesehatan, 4(2), 121–131. https://doi.org/10.55606/klinik.v4i2.3923
Amin, S., Nurazizah, G. A., & Khaerina, Y. (2025). Analisis Intervensi Edukatif terhadap Penggunaan Antibiotik Rasional: Kontribusi terhadap Pengendalian Resistensi Berdasarkan Kimia Medisinal. Journal of Innovative and Creativity, 5(2), 2385–2394. https://doi.org/https://doi.org/10.31004/joecy.v5i2.491
Benjamin, I., Louis, H., Ekpen, F. O., Gber, T., Gideon, M. E., Ahmad, I., Unimuke, T. O., Akanimo, N. P., Patel, H. M., Eko, I. J., Simon, O., Agwamba, E. C., & Ejiofor, E. (2022). Modeling the anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Activity of (E)-6-chloro-N2-phenyl-N4-(4-Phenyl-5-(Phenyl Diazinyl)-2λ3, 3 λ2- Thiazol-2-yl)-1, 3, 5-Triazine-2,4- Diamine. Polycyclic Aromatic Compounds, 43(1), 1–28. https://doi.org/10.1080/10406638.2022.2160773
Bhaskar, V., Manisha, D. S., Bhaskar, V., Zachariah, S. M., Abdelgawad, M. A., Ghoneim, M. M., & Mathew, B. (2023). In silico development of potential InhA inhibitors through 3D-QSAR analysis, virtual screening and molecular dynamics. Journal of Biomolecular Structure & Dynamics, 43(3), 1329–1351. https://doi.org/10.1080/07391102.2023.2291549
Diane, A., El-Mrabet, A., Haloui, R., & El Monfalouti, H. (2025). Hybrid 2-Quinolone–1,2,3-triazole Compounds: Rational Design, In Silico Optimization, Synthesis, Characterization, and Antibacterial Evaluation. Antibiotics, 14(9), 877. https://doi.org/10.3390/antibiotics14090877
DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 47, 20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012
Edache, E. I., Uzairu, A., Mamza, P., & Shallangwa, G. A. (2020). Computational Modeling and Molecular dynamics Simulations of Thiazolino 2-pyridone amide analog compounds as Chlamydia trachomatis inhibitor. 1(3), 123–138. https://doi.org/10.22034/JCHEMLETT.2021.262437.1011
Hammoudi, N.-E.-H., Benguerba, Y., Attoui, A., Hognon, C., Lemaoui, T., Sobhi, W., Benaicha, M., Badawi, M., & Monari, A. (2020). In silico drug discovery of IKK-β inhibitors from 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) pyridine derivatives based on QSAR, docking, molecular dynamics and drug-likeness evaluation studies. Journal of Biomolecular Structure & Dynamics, 40(2), 886–902. https://doi.org/10.1080/07391102.2020.1819878
Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
Jiang, H.-Y., Xu, J., Wang, Z., & Xiong, F. (2024). Design of Novel Anti-MRSA Inhibitors: A Computational Study Integrating QSAR, ADMET, and Molecular Dynamics Simulation. New Journal of Chemistry, 48(1). https://doi.org/10.1039/d4nj03247k
Kumar, P. K., Nilewar, S. S., Bonthu, M. G., & Dudhe, S. P. (2025). Computational Drug Design and Docking Studies of Thiazole Derivatives Targeting Bacterial DNA Gyrase. Indian Journal of Pharmaceutical and Catalysis Research, 1(4), 40–53. https://doi.org/10.5281/zenodo.11012345
Manachou, M., Daoui, O., Abchir, O., Dahmani, R., Elkhattabi, S., Samadi, A., Belaidi, S., & Chtita, S. (2024). An antibacterial lead identification of novel 1,3,4-oxadiazole derivatives based on molecular computer aided design approaches. Scientific African, 23(7), 1–28. https://doi.org/10.1016/j.sciaf.2024.e02078
Mandal, R. S., & Das, S. (2017). In Silico Approaches Toward Combating Antibiotic Resistance. In Springer, Cham (pp. 577–593). https://doi.org/10.1007/978-3-319-48683-3_25
Murray, C. J. L. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Noumi, E., Snoussi, M., Bouali, N., Alshammari, M. M., & Badraoui, R. (2025). Structure-based virtual screening, molecular docking, and MD simulation studies: An in silico approach for identifying potential MBL inhibitors. PLOS ONE, 20(8), 1–24. https://doi.org/10.1371/journal.pone.0324836
Oluwafemi, K. A., Jimoh, R. B., & Omoboyowa, D. A. (2024). Investigating the effect of 1,2-Dibenzoylhydrazine on Staphylococcus aureus using integrated computational approaches. In Silico Pharmacology, 12(1), 45. https://doi.org/10.1007/s40203-024-00278-1
O’Neill, J. (2016). Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. UK Government.
Shaker, B., Lee, J., & Kim, D. (2023). In silico exploration of novel antibacterial agents: Integrating QSAR and molecular dynamics for drug discovery. Frontiers in Microbiology, 14(1), 1175562. https://doi.org/10.3389/fmicb.2023.1175562
Silver, L. L. (2011). Challenges of antibacterial discovery. Clinical Microbiology Reviews, 24(1), 71–109. https://doi.org/10.1128/CMR.00030-10
Ventola, C. L. (2019). The antibiotic resistance crisis: part 1. Pharmacy and Therapeutics, 44(7), 410–415.
WHO. (2024). Antimicrobial resistance: Global situation, latest updates, and future strategies. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Xiong, F., & Xu, J. (2024). Design of Novel Naphthalimidopropanediol Derivatives as Staphylococcus Aureus Antibacterial Agents Utilizing 3D‐QSAR, ADMET, Molecular Docking, and Dynamics Simulations. Chemistryselect, 59(7), 1544–1554. https://doi.org/10.1002/slct.202404157
Ye, J., Yang, X., & Ma, C.-X. (2022). QSAR, Docking, and Molecular Dynamics Simulation Studies of Sigmacidins as Antimicrobials against Streptococci. International Journal of Molecular Sciences, 23(8), 4085. https://doi.org/10.3390/ijms23084085
Zhang, X., Li, H., & Wang, Y. (2022). Accelerating antibiotic discovery with integrated QSAR and molecular dynamics simulations. Journal of Chemical Information and Modeling, 62(12), 3101–3113. https://doi.org/10.1021/acs.jcim.2c00234















