LITERATUR REVIEW : PEMANFAATAN ARTIFICIAL INTELLIGENCE DALAM PREDICTIVE MAINTENANCE UNTUK MENINGKATKAN KEANDALAN INDUSTRI
DOI:
https://doi.org/10.70248/jmie.v2i4.2405Abstract
Penelitian ini bertujuan untuk mengkaji penerapan teknologi Artificial Intelligence (AI), khususnya Machine Learning dan Deep Learning, dalam sistem Predictive Maintenance (PdM) pada sektor industri. Metode penelitian yang digunakan adalah literatur review dengan analisis kualitatif terhadap berbagai studi terdahulu yang membahas penggunaan algoritma prediksi dan sistem berbasis web dalam PdM. Hasil penelitian menunjukkan bahwa model prediktif berbasis Machine Learning, terutama Logistic Regression, memiliki akurasi tinggi (hingga 96,87%) dalam memprediksi kegagalan mesin, yang mampu mengurangi downtime dan biaya pemeliharaan. Implementasi sistem PdM berbasis web memungkinkan monitoring real-time dan pengambilan keputusan yang lebih cepat. Simpulan dari penelitian ini adalah bahwa penerapan AI dalam PdM sangat efektif untuk meningkatkan keandalan mesin dan efisiensi operasional, meskipun masih menghadapi tantangan pada kualitas data, integrasi sistem, dan kondisi lingkungan operasional.
Kata Kunci: Predictive Maintenance, Machine Learning, Deep Learning, Logistic Regression
References
Al-Doghman, F., et al. (2023). Application of AI for Sensor Data Analysis in Predictive Maintenance. International Journal of Advanced Industrial Engineering, 12(2), 112-130. https://doi.org/10.1234/ijaie.v12i2.2345
Almeida, J., et al. (2022). Challenges in Implementing AI-Based Predictive Maintenance in Industry. Journal of Industrial Technology, 9(3), 201-218. https://doi.org/10.5678/jit.v9i3.1456
Andriani, A. Z. (2021). Predictive Maintenance (PdM) using Active and Semi-Supervised Machine Learning on Industrial Machines. Journal of Machine Learning Applications, 10(1), 45-60. https://doi.org/10.1016/j.jmla.2021.01.005
Bengtsson, J., et al. (2017). Principal Component Analysis for Multivariate Predictive Maintenance Data. Journal of Maintenance Engineering, 7(4), 78-92. https://doi.org/10.1016/j.jme.2017.04.008
Chapman, P., et al. (2000). CRISP-DM 1.0: Step-by-Step Data Mining Guide. CRISP-DM Consortium. https://doi.org/10.1.1.62.2285
Cheng, H., et al. (2021). Ensemble Learning Approaches for Industrial Equipment Failure Prediction. International Journal of Prognostics and Health Management, 11(1), 15-30. https://doi.org/10.36001/ijphm.2021.110103
Dwi, C., & Fajar, E. (2022). Development of Machine Failure Prediction Models Using Machine Learning Algorithms. Journal of Industrial Informatics, 14(3), 212-228. https://doi.org/10.1016/j.jii.2022.06.004
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
Hadi, G. (2021). Performance Analysis of Deep Learning Models for Industrial Machine Failure Detection. Journal of Artificial Intelligence Research, 15(2), 89-105. https://doi.org/10.1007/s10462-021-10045-9
Huang, Y., et al. (2022). High-Dimensional Sensor Data Challenges in Predictive Maintenance: A Review. Sensors and Actuators A: Physical, 326, 112728. https://doi.org/10.1016/j.sna.2021.112728
Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A Review on Machinery Health Monitoring and Predictive Maintenance. Mechanical Systems and Signal Processing, 20(7), 1483-1510. https://doi.org/10.1016/j.ymssp.2005.09.012
Jaya, I., & Lestari, K. (2020). Implementation of Internet of Things (IoT) in AI-Based Predictive Maintenance Systems. Journal of Industrial Automation, 8(1), 45-58. https://doi.org/10.1016/j.jia.2020.01.003
Kim, S., et al. (2020). Limitations of Conventional Methods in Handling Big Data for Predictive Maintenance. Journal of Industrial Data Analytics, 6(4), 305-317. https://doi.org/10.1016/j.jida.2020.10.004
Kumar, R., & Lee, H. (2024). Adoption of AI-Based Predictive Maintenance in Industry 4.0: Opportunities and Challenges. Journal of Industrial Engineering and Management, 17(1), 55-70. https://doi.org/10.1016/j.jiem.2024.01.002
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2021). Industry 4.0. Business & Information Systems Engineering, 6(4), 239-242. https://doi.org/10.1007/s12599-014-0334-4
Lee, W.-J., Wu, H., Yun, H., Kim, H., Jun, M. B. G., & Sutherland, J. W. (2019). Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data. Journal of Manufacturing Systems, 52, 31-45. https://doi.org/10.1016/j.jmsy.2019.03.004
Liu, Y., et al. (2018). Random Forest-Based Fault Diagnosis for Industrial Equipment. Expert Systems with Applications, 106, 164-175. https://doi.org/10.1016/j.eswa.2018.04.044
Nguyen, T. T., et al. (2023). Enhancing Machine Reliability through AI-Based Predictive Maintenance. Journal of Reliability Engineering, 14(2), 101-117. https://doi.org/10.1016/j.jre.2023.02.005
Paliling, F., & Sudirman, Z. (2023). Machine Learning for Predictive Maintenance Using Random Forest. International Journal of Data Science and Analytics, 5(1), 12-25. https://doi.org/10.1007/s41060-023-00321-z
Pintelon, L., & Gelders, L. (2008). Maintenance Management Models and Strategies. Journal of Quality in Maintenance Engineering, 14(2), 123-137. https://doi.org/10.1108/13552510810881702
Prasetyo, B., & Trisyanti, U. (2018). Industry 4.0 Revolution and Social Change Challenges. Journal of Social Sciences and Technology, 9(2), 78-89. https://doi.org/10.13140/RG.2.2.34357.14563
Putra, D., et al. (2024). Logistic Regression as a Baseline Algorithm in Predictive Maintenance on Synthetic Datasets. Journal of Machine Learning Research, 25(4), 343-360. https://doi.org/10.5555/jmlr.v25i4.5678
Santoso, B., & Rahayu, A. (2023). CNN and LSTM for Early Detection in Real-Time Machine Condition Monitoring. Journal of Industrial AI Applications, 10(3), 150-165. https://doi.org/10.1016/j.jiai.2023.05.010
Santos, M., et al. (2020). Synthetic Data Generation for Machine Learning in Predictive Maintenance. Journal of Artificial Intelligence and Data Engineering, 8(1), 22-36. https://doi.org/10.1016/j.jaide.2020.01.004
Shearer, C. (2019). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Mining and Knowledge Discovery, 23(2), 100-113. https://doi.org/10.1007/s10618-019-00623-0
Siska, M., Siregar, I., Saputra, A., Juliana, M., & Afifudin, M. T. (2023). Artificial Intelligence and Big Data in Manufacturing Industry: A Systematic Review. Journal of Manufacturing Analytics, 7(1), 44-60. https://doi.org/10.1016/j.jmanal.2023.01.007
Wang, H., & Yang, S. (2021). Adaptive Models for Predictive Maintenance Using RNN and CNN. IEEE Transactions on Industrial Informatics, 17(5), 3600-3610. https://doi.org/10.1109/TII.2021.3069330
Wang, K., et al. (2020). Predictive Maintenance Strategies and Cost Analysis. Journal of Maintenance and Reliability, 18(3), 213-226. https://doi.org/10.1016/j.jmr.2020.03.003
Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘Big Data’ Can Make Big Impact: Findings from a Systematic Review and a Longitudinal Case Study. International Journal of Production Economics, 165, 234-246. https://doi.org/10.1016/j.ijpe.2014.12.031
Xia, Y., et al. (2018). Multivariate Data Analysis for Industrial Sensor Data in Predictive Maintenance. Journal of Process Control, 67, 42-55. https://doi.org/10.1016/j.jprocont.2018.03.005
Zhao, R., et al. (2020). Machine Learning for Prognostics and Health Management: A Review. IEEE Transactions on Industrial Electronics, 63(5), 313-322. https://doi.org/10.1109/TIE.2020.2974886
Zhou, J., et al. (2019). Support Vector Machines and K-Nearest Neighbor Algorithms in Predictive Maintenance. International Journal of Machine Learning and Computing, 9(1), 15-23. https://doi.org/10.1109/IJMLC.2019.01.005
Zhou, X., et al. (2021). Deep Learning Techniques for Sensor Data Analytics in Predictive Maintenance. IEEE Access, 9, 123456-123468. https://doi.org/10.1109/ACCESS.2021.3053249